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Decorators that will be useful for both daily development and application needs.
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Getting started


Requirements


	Python (3.7, 3.8, 3.9, 3.10)






Installation

DecMore can be installed with pip:

pip install decmore







Usage

To use the decorators, simply import the library into the desired .py file and place them in the functions or classes:

from decmore import CheckTypes

@CheckTypes()
def test_function(var1: str, var2: list, var: int):
    ...
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Base

The Base decorator is only meant to help other useful decorators, so it should not be used as a decorator for your code.
If you want to understand more about it locate the file default.py
With its implementation we can tell the decorators what properties, features and changes they should support

class BaseDecorator(object):
    allowed_params = []
    allowed_methods = []
    disallowed_methods = []
    class_injection = True
    instance: Callable | None = None
    _traced_methods = {}
    is_class = False






allowed_params

This property, which is in WIP, will allow you to restrict the parameters passed to each decorator



allowed_methods

This property is sent directly by the user when instantiating a decorator that can be used in classes that tells which methods of that class can be overridden to run with the decorator
It is an empty list by default.



disallowed_methods

This property is sent directly by the user when instantiating a decorator that can be used in classes that tells which methods of that class cannot be overridden to be executed with the decorator
It is an empty list by default and is changed when the Base decorator overwrites functions.
Here are the functions that are included in this property:



	__class__


	__delattr__


	__dict__


	__dir__


	__doc__


	__eq__


	__format__


	__ge__


	__getattribute__


	__gt__


	__hash__


	__init__


	__init_subclass__


	__le__


	__lt__


	__module__


	__ne__


	__new__


	__reduce__


	__reduce_ex__


	__repr__


	__setattr__


	__sizeof__


	__str__


	__subclasshook__


	__weakref__


	__getstate__







If you want some to be overwritten, add them to the allowed_methods property



class_injection

This property is sent through the child decorator to say whether it can be placed under a class, thus injecting a radar function that overrides the other functions of that class so that we can trigger the decorator in each of them.
This property is True by default.



instance

This property is only for controlling the actions of each decorator.



_traced_methods

This property helps the Base decorator in injecting the radar function.



is_class

This property is changed when the Base decorator analyzes the object to be updated and allows the injection of the radar function to happen automatically




CheckTypes

The CheckTypes decorator helps the developer to make sure that the variables passed to the function conform to the required types.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class


Usage

from decmore import CheckTypes

@CheckTypes()
def func(var1: str, var2: list, var3: list | tuple):
    ...


class klass:
    def __init__(self):
        ...

    @CheckTypes()
    @staticmethod
    def static(var1: list | tuple):
        ...








Profiler

The Profiler decorator helps the developer to analyze the performance of his code by showing on the console, in order of time, which functions and lines took longer to execute.
Accepts to be instantiated in classes and can receive the allowed_methods and disallowed_methods parameters.

from time import sleep
from decmore import Profiler


@Profiler()
def func():
    sleep(10)


@Profiler(allowed_methods=['__init__'], disallowed_methods=['post'])
class klass:
    def __init__(self):
        sleep(1)

    def get(self):
        ...

    def post(self):
        ...







ToThreads

The ToThreads decorator divides up the work for a set number of threads when it is instantiated.
Receive amount and return_expected parameters.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class

Parameters:


	
	amount:
	Number of threads that will be created and executed







	
	return_expected:
	If the function returns something, this parameter should be changed to True, since the default value is False.









from time import sleep
from decmore import ToThreads


@ToThreads(amount=2, return_expected=True)
def test_threads(v):
    return [x * 10 for x in v]







Cache

The Cache decorator saves the return of the function so that it is not executed if the parameters result in the same return.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class

from time import sleep
from decmore import ToThreads


@Cache()
def test_threads(v):
    return [x * 10 for x in v]
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