

DecMore

[image: _images/decmore.svg]
[#1][image: _images/2486fbf8e1003e127b62bf3084f0b910388ac29a.svg]
[#2][image: _images/decmore1.svg]
[#3][image: _images/decmore2.svg]
[#4][image: _images/decmore3.svg]
[#5]
Decorators that will be useful for both daily development and application needs.

Contents

	Getting started
	Requirements

	Installation

	Usage

	Base
	allowed_params

	allowed_methods

	disallowed_methods

	class_injection

	instance

	_traced_methods

	is_class

	CheckTypes
	Usage

	Profiler

	ToThreads

	Cache

Indices and tables

	Index

	Module Index

Footnotes

[#1]
https://github.com/DanielTrivelli/decmore

[#2]
https://decmore.readthedocs.io/en/latest/

[#3]
https://pypi.python.org/pypi/decmore

[#4]
https://github.com/DanielTrivelli/decmore

[#5]
https://pypi.python.org/pypi/decmore

Getting started

Requirements

	Python (3.7, 3.8, 3.9, 3.10)

Installation

DecMore can be installed with pip:

pip install decmore

Usage

To use the decorators, simply import the library into the desired .py file and place them in the functions or classes:

from decmore import CheckTypes

@CheckTypes()
def test_function(var1: str, var2: list, var: int):
 ...

Footnotes

Base

The Base decorator is only meant to help other useful decorators, so it should not be used as a decorator for your code.
If you want to understand more about it locate the file default.py
With its implementation we can tell the decorators what properties, features and changes they should support

class BaseDecorator(object):
 allowed_params = []
 allowed_methods = []
 disallowed_methods = []
 class_injection = True
 instance: Callable | None = None
 _traced_methods = {}
 is_class = False

allowed_params

This property, which is in WIP, will allow you to restrict the parameters passed to each decorator

allowed_methods

This property is sent directly by the user when instantiating a decorator that can be used in classes that tells which methods of that class can be overridden to run with the decorator
It is an empty list by default.

disallowed_methods

This property is sent directly by the user when instantiating a decorator that can be used in classes that tells which methods of that class cannot be overridden to be executed with the decorator
It is an empty list by default and is changed when the Base decorator overwrites functions.
Here are the functions that are included in this property:

	__class__

	__delattr__

	__dict__

	__dir__

	__doc__

	__eq__

	__format__

	__ge__

	__getattribute__

	__gt__

	__hash__

	__init__

	__init_subclass__

	__le__

	__lt__

	__module__

	__ne__

	__new__

	__reduce__

	__reduce_ex__

	__repr__

	__setattr__

	__sizeof__

	__str__

	__subclasshook__

	__weakref__

	__getstate__

If you want some to be overwritten, add them to the allowed_methods property

class_injection

This property is sent through the child decorator to say whether it can be placed under a class, thus injecting a radar function that overrides the other functions of that class so that we can trigger the decorator in each of them.
This property is True by default.

instance

This property is only for controlling the actions of each decorator.

_traced_methods

This property helps the Base decorator in injecting the radar function.

is_class

This property is changed when the Base decorator analyzes the object to be updated and allows the injection of the radar function to happen automatically

CheckTypes

The CheckTypes decorator helps the developer to make sure that the variables passed to the function conform to the required types.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class

Usage

from decmore import CheckTypes

@CheckTypes()
def func(var1: str, var2: list, var3: list | tuple):
 ...

class klass:
 def __init__(self):
 ...

 @CheckTypes()
 @staticmethod
 def static(var1: list | tuple):
 ...

Profiler

The Profiler decorator helps the developer to analyze the performance of his code by showing on the console, in order of time, which functions and lines took longer to execute.
Accepts to be instantiated in classes and can receive the allowed_methods and disallowed_methods parameters.

from time import sleep
from decmore import Profiler

@Profiler()
def func():
 sleep(10)

@Profiler(allowed_methods=['__init__'], disallowed_methods=['post'])
class klass:
 def __init__(self):
 sleep(1)

 def get(self):
 ...

 def post(self):
 ...

ToThreads

The ToThreads decorator divides up the work for a set number of threads when it is instantiated.
Receive amount and return_expected parameters.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class

Parameters:

	
	amount:
	Number of threads that will be created and executed

	
	return_expected:
	If the function returns something, this parameter should be changed to True, since the default value is False.

from time import sleep
from decmore import ToThreads

@ToThreads(amount=2, return_expected=True)
def test_threads(v):
 return [x * 10 for x in v]

Cache

The Cache decorator saves the return of the function so that it is not executed if the parameters result in the same return.
This decorator only works on functions, when instantiated under a class it will return an error saying that it supports functions and that it can be instantiated in static functions inside the class

from time import sleep
from decmore import ToThreads

@Cache()
def test_threads(v):
 return [x * 10 for x in v]

Footnotes

Index

 nav.xhtml

 Table of Contents

 		
 DecMore

 		
 Getting started

 		
 Requirements

 		
 Installation

 		
 Usage

 		
 Base

 		
 allowed_params

 		
 allowed_methods

 		
 disallowed_methods

 		
 class_injection

 		
 instance

 		
 _traced_methods

 		
 is_class

 		
 CheckTypes

 		
 Usage

 		
 Profiler

 		
 ToThreads

 		
 Cache

_static/minus.png

_static/plus.png

_static/file.png

